INITIAL STUDIES ON THE OXIDE SYSTEM Cr₂O₃-Sb₂O₄

E. Filipek, M. Kurzawa and G. Dabrowska

Department of Inorganic Chemistry, Technical University of Szczecin, Al. Piastów 42 71-065 Szczecin, Poland

Abstract

Differential thermal analysis (DTA) and X-ray diffraction (XRD) were utilized to study the phase equilibrium established in the subsolidus area of the system Cr_2O_3 -Sb₂O₄. It was found that the components of the title system interact in ambient air to produce CrSbO₄. The compound is stable up to ~1380°C, at which temperature it starts to decompose.

Keywords: antimony tetroxide, chromium(III) oxide, DTA, IR, XRD

Introduction

Antimony tetroxide and chromium(III) oxide, and especially their structures and physico-chemical properties, have long aroused the profound interest of many workers [1–13]. However, the available publications afford no information either on reactions that might take place between the oxides in the solid state in air, or on the phase equilibria established in the system Cr_2O_3 – Sb_2O_4 . Only a few works have dealt with the reaction of antimony(III) and chromium(III) oxides in air, to produce a compound to which the molecular formula $CrSbO_4$ has been attributed [14, 15]. This compound can be obtained by heating an equimolar Sb_2O_3/Cr_2O_3 mixture in air at 1473 K for 3 days. It can also be prepared by precipitation from solutions containing $SbCl_5/CrCl_3$ mixtures [16]. $CrSbO_4$ is reported to be isostructural with FeSbO_4 [16], to crystallize in a tetragonal system and to possess a rutile structure [15].

In order to identify the types and number of phases formed in air in the binary system Cr_2O_3 -Sb₂O₄, a study was undertaken of the equilibrium phases established in the solid state of the system over its entire component concentration range.

Experimental

The following reagents were used: Sb_2O_3 (pure, Merck, Germany), Cr_2O_3 (pure, Aldrich Chemie, Germany), and α -Sb₂O₄, prepared by heating Sb₂O₃ in air, in the following cycles:

 $400^{\circ}\text{C} (1 \text{ h}) \rightarrow 500^{\circ}\text{C} (1 \text{ h}) \rightarrow 600^{\circ}\text{C} (1 \text{ h}) \rightarrow 650^{\circ}\text{C} (24 \text{ h}).$

1418–2874/2000/ \$ 5.00 © 2000 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht In order to investigate the phase equilibria established in the solid state, 7 samples were prepared from α -Sb₂O₄ and Cr₂O₃, in proportions reflecting the entire component concentration range (Table 1). The oxide mixtures with the given contents were homogenized by mechanical grinding, shaped into pastilles and heated in cycles under conditions that led to samples in an equilibrium state, i.e.: 500°C (1 h) \rightarrow 600°C (48 h) \rightarrow 700°C (48 h) \rightarrow 800°C (48 h) \rightarrow 900°C(48 h) \rightarrow 1000°C (48 h) \rightarrow 1000°C (24 h).

 Table 1 Contents of initial mixtures and X-ray analysis results on samples after the final heating cycle

No.	Contents of initial mixtures/mol%		Dharas faun d
	Sb_2O_4	Cr_2O_3	Phases Tound
1	25.00	75.00	CrSbO ₄ , Cr ₂ O ₃
2	33.33	66.67	CrSbO ₄ , Cr ₂ O ₃
3	40.00	60.00	CrSbO ₄ , Cr ₂ O ₃
4	50.00	50.00	CrSbO ₄
5	60.00	40.00	$CrSbO_4$, α - Sb_2O_4
6	66.67	33.33	CrSbO ₄ , α-Sb ₂ O ₄
7	75.00	25.00	CrSbO ₄ , α-Sb ₂ O ₄

In each heating cycle, the samples were slowly cooled to ambient temperature, weighed to verify their mass change, ground, subjected to X-ray phase analysis, and afterwards again shaped into pastilles and heated, the procedure being repeated until the samples achieved the equilibrium state.

Diffraction patterns of the samples were obtained with an HZG-4/A2 diffractometer, with a cobalt lamp as radiation source. The identification of the individual phases depended on the consistency of particular X-ray reflexions recorded with the data contained in PDF cards [17] and by referring to publications [15].

DTA/TG examinations of the samples were made at 20–1500°C in ambient air with a Q1500 derivatograph (MOM, Budapest). Samples weighing 300 mg each were placed in corundum crucibles.

A monophasic sample obtained in the final heating cycle was examined by IR spectroscopy. An equimolar mixture of Sb_2O_4 and Cr_2O_3 was examined similarly. The measurements were made within the wavenumber range 1500–200 cm⁻¹, with an IR SPECORD M-80 spectrophotometer (Carl Zeiss, Jena, Germany). The infrared spectra were made by pelletting a sample with KBr at 1:300 mass ratio.

Results and discussion

Table 1 lists the contents of the initial samples and data on the X-ray phase analysis of all the samples in the equilibrium state. The results indicate that Cr_2O_3 does not remain in equilibrium with α -Sb₂O₄ in the subsolidus area. Diffraction patterns of equilibrium samples containing up to 50.00 mol% of α -Sb₂O₄ in their initial mixtures ex-

hibit sets of diffraction lines, some of which were attributed to Cr_2O_3 , whereas the positions of other lines and their intensity relations are characteristic of a diffraction line set for the phase $CrSbO_4$ [15]. In the final heating cycle, a sample containing an initial mixture of 50.00 mol% α -Sb₂O₄ was monophasic, containing only CrSbO₄. X-ray phase analysis of samples containing upwards of 50 mol% of α -Sb₂O₄ demonstrated the presence of antimony(IV) oxide together with CrSbO₄. The phase compositions of the samples in equilibrium are indicative of the reaction of α -Sb₂O₄ with Cr₂O₃ to yield CrSbO₄. The summary mass increment for samples after 6 heating cycles, between 0.11 and 1.68% mass, suggests that the reaction involves atmospheric oxygen, according to the equation

Such a reaction course may explain why this phase was not obtained when equimolar mixtures of Cr_2O_3/Sb_2O_3 and Cr_2O_3/Sb_2O_4 were heated in the absence of atmospheric oxygen in sealed quartz ampules.

Fig. 1 DTA and TG curves of CrSbO₄

The DTA curve of a monophasic sample of $CrSbO_4$ demonstrated that the endothermic effect with an onset temperature of ~1380°C was associated with the 65% mass decrement recorded in the TG curve of the sample (Fig. 1). On close inspection of the sample analyzed by DTA, it appeared that, when heated to 1450°C, the sample had not melted and contained only Cr_2O_3 . The experimental results suggest that $CrSbO_4$ suffers thermal decomposition at 1380°C, yielding Cr_2O_3 and a product which is gaseous at the decomposition temperature, according to the equation

$$2CrSbO_{4(s)} = Cr_2O_{3(s)} + gas$$

The available information leads us to assume that the decomposition starts with the formation of Sb_2O_4 (among other products), which at 1273 K [6] decomposes to antimony(III) oxide and oxygen. The mass decrement recorded in the TG curve of the

J. Therm. Anal. Cal., 60, 2000

phase CrSbO₄ may be indicative of this mechanism. CrSbO₄ and Cr₂O₃ remain in equilibrium in the solid state up to 1380°C, i.e. the temperature of CrSbO₄ decomposition, as evidenced by the temperature of onset of the endothermic effect recorded in the DTA curves of the samples from the relevant component concentration range for the system under consideration. The DTA curves of samples containing CrSbO₄ and α -Sb₂O₄ in equilibrium show the onset of the first endothermic effect at ~1160°C, which implies that the phases coexist in the solid state up to this temperature. The mass decrement related with this effect corresponds to thermal dissociation of the α -Sb₂O₄ samples.

Fig. 2 IR spectra of: $a - 50.00 \text{ mol}\% \alpha$ -Sb₂O₄+50.00 mol% Cr₂O₃; $b - CrSbO_4$

As no reference to the IR spectrum of the phase CrSbO₄ has been found, the compound obtained in this work from the reaction of α -Sb₂O₄ and Cr₂O₃ was examined by IR spectroscopy. Only the IR spectra of Cr₂O₃ and Sb₂O₄ are known. Figure 2 shows IR spectra of an equimolar α -Sb₂O₄/Cr₂O₃ mixture and of CrSbO₄. It can be seen that the IR spectrum of the phase CrSbO₄ is different from that of the oxide mixture both in the number of absorption bands and in their positions and intensities. Absorption bands characteristic of CrSbO₄ were observed within the wavelength range 250–900 cm⁻¹. In contrast with the IR spectrum of the oxide mixture, that of the phase has two broad absorption bands with maxima at 716 and 580 cm⁻¹, and a sharp, very intense band with maximum at 388 cm⁻¹. The IR spectrum of CrSbO₄ contains two further absorption bands at lower wavelengths, 332 and 300 cm⁻¹. There is a broad band with maximum at 716 cm⁻¹, on the shoulder of which there is an inflexion at 752 cm⁻¹. The published data suggest that this can be attributed to the stretching vibrations of Sb–O bonds in SbO₆ octahedra [18]. Another broad absorption band, with maximum at 580 cm⁻¹, can be ascribed to the stretching vibrations of Sb-O and Cr-O bonds in MO6 octahedra, and to stretching vibrations of the bridging linkage Cr–O–Cr. Still another absorption band in the CrSbO₄ oscillation spectrum, with maximum at 388 cm⁻¹, may be brought about by distortional vibrations of the Cr–O–Cr linkage [19, 20]. As it is impossible to associate other IR absorption bands

J. Therm. Anal. Cal., 60, 2000

with the corresponding vibrations, the work has been deemed qualitative in character, and allows only the statement that $CrSbO_4$ is built up of SbO_6 and CrO_6 octahedra.

Conclusions

The investigations led to the following conclusions:

- The components of the system Cr_2O_3 -Sb₂O₄ react in air atmosphere to form $CrSbO_4$.
- CrSbO₄ starts to decompose at 1380°C, yielding the solid product Cr₂O₃ and a gaseous product.
- The IR spectrum of CrSbO₄ has been recorded (Fig. 2).

References

- 1 W. Meisel, Appl. Phys., 59 (1994) 381.
- 2 G. Mestl, P. Ruiz, B. Delmon and H. Knözinger, J. Phys. Chem., 98 (1994) 112576.
- 3 R. Izgnierga, E. Sacher and A. Ielon, Appl. Surf. Sci., 40 (1989) 175.
- 4 R. G. Teller, M. R. Grosseli, J. F. Brazdil, M. Mehicic and R. K. Grasseli, Inorg. Chem., 24 (1985) 3370.
- 5 V. A. Ryabin, M. V. Kireeva and N. A. Berg, Neorganicheskiye Soedineniya Khroma, Leningrad, 1981, Izd. Khimiya.
- 6 S. E. Golunski, T. G. Nebell and M. J. Pope, Thermochim. Acta, 52 (1981) 153.
- 7 F. Garbassi, Surf. Interface Anal., 2 (1980) 165.
- 8 C. A. Cody, L. Di Carlo and R. K. Darlington, Inorg. Chem., 18 (1979) 1572.
- 9 I. P. Olenkova and L. M. Plyasova, Zh. Strukt. Khim., 19 (1978) 1040.
- 10 D. J. Stewart, O. Knop and C. Ayasse, Condition J. Chem., 50 (1972) 690.
- 11 G. G. Long, J. G. Stevens and L. H. Browen, Inorg. Nucl. Chem. Lett., 5 (1969) 799.
- 12 M. Eick and L. Kihlborg, Acta Chem. Scand., 20 (1966) 1658.
- 13 D. Roger and A. C. Skapski, Proc. Chem. Soc., (1964) 400.
- 14 K. Brandt, Arkiv kem, mineralog, geolog., 17A (1943) 15.
- 15 J. Amador and I. Rasines, J. Appl. Cryst., 14 (1981) 348.
- 16 F. J. Berry and M. I. Sarson, Polyhedron, 12 (1993) 1581.
- 17 Joint Committee of Powder Diffraction File: 6-0504, 11-694.
- 18 J. Walczak, E. Filipek and M. Bosacka, Solid State Ionics, 101-103 (1997) 1363.
- 19 D. Olivier, Rev. Chim. Miner., 6 (1969) 1033.
- 20 A. Bielanski, J. Pozniczek and E. Wenda, Bull. Acad. Sci., Ser. Sci. Chim., 6 (1978) 485.

J. Therm. Anal. Cal., 60, 2000